
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Secure Time-Sensitive Software-Defined
Networking in Vehicles

Timo Häckel, Philipp Meyer, Franz Korf, and Thomas C. Schmidt, Member, IEEE

Abstract—Current designs of future In-Vehicle Networks (IVN)
prepare for switched Ethernet backbones, which can host ad-
vanced LAN technologies such as IEEE Time-Sensitive Net-
working (TSN) and Software-Defined Networking (SDN). In this
paper, we present an integrated Time-Sensitive Software-Defined
Networking (TSSDN) architecture that simultaneously enables
control of synchronous and asynchronous real-time and best-
effort communication for all IVN traffic classes. Despite the
central SDN controller, we can validate that control can operate
without a delay penalty for TSN traffic, provided protocols are
properly mapped. We demonstrate how TSSDN adaptably and
reliably enhances network security for in-vehicle communication.
A systematic investigation of the possible control flow integrations
with switched Ether-networks reveals that these strategies allow
for shaping the attack surface of a software-defined IVN. We
discuss embeddings of control flow identifiers on different layers,
covering the range from a fully exposed mapping to deep
encapsulation. We experimentally evaluate these strategies in a
production vehicle, which we map to a modern Ethernet topology.
Our findings indicate that visibility of automotive control flows
on lower network layers enables isolation and access control
throughout the network infrastructure. Such a TSSDN backbone
can establish and survey trust zones within the IVN and reduce
the attack surface of connected cars in various attack scenarios.

Index Terms—Automotive Ethernet, IVN, Security, TSN, SDN

I. INTRODUCTION

VEHICLES continuously implement new features based
on sensors and actuators connected with Electronic Con-

trol Units (ECUs). Traditionally, the In-Vehicle Network (IVN)
is organized in functional domains using a combination of bus
systems. Automotive Ethernet has emerged as the next high-
bandwidth communication technology [1]. Future IVNs will
migrate to switched Ethernet [2] as shared backbones for dif-
ferent domains and service requirements. For time-constraint
traffic, the standards of Time-Sensitive Networking (TSN)
(IEEE 802.1Q [3]) add real-time capabilities to Ethernet.

Advanced Driver Assistance Systems (ADAS) and similar
features increase cross-domain communication and functions
implemented in software following a Service-Oriented Archi-
tecture (SOA). These services are highly dynamic and require
an adaptable IVN. Software-Defined Networking (SDN) [4]
has been identified as a powerful building block for IVNs,
as it promises to increase robustness and adaptability [5]–
[7]. In SDN, the control plane of the network devices is

Copyright (c) 2022 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Department of Computer Science, Hamburg
University of Applied Sciences (HAW), 20099 Hamburg, Germany (e-mail:
{timo.haeckel, philipp.meyer, franz.korf, t.schmidt}@haw-hamburg.de).
This work is funded by the Federal Ministry of Education and Research of

Germany (BMBF) within the SecVI project.

offloaded to a central controller. On the data plane, network
devices forward packets based on pipelines controlled by the
SDN controller. Time-Sensitive Software-Defined Networking
(TSSDN) was introduced to enable centralized reconfiguration
of time-sensitive communication [8]. In recent work, we inte-
grated TSN with SDN to control asynchronous real-time traffic
using the OpenFlow protocol without a delay penalty [6].

Security challenges arise from communication with other
vehicles or roadside units (V2X), and via Internet uplinks
that open a vehicle to remote attackers. All this, and also the
flattening interconnect of domains increase the vulnerability
of safety-critical functions and require versatile measures to
secure future vehicles [9]. Current vehicles are vulnerable to
manipulation by third parties, which became apparent through
cyber-attacks in the field [10]. A robust IVN can limit the
attack surface and reduce the impact on communication.

SDN can improve network security by separating the control
from the data plane [11]. The central controller has global net-
work knowledge and devices only forward packets according
to predefined flows. This bears the potential to detect, prevent,
or mitigate cyber-attacks [12]. In previous work, we identified
the SDN matching pipeline as a powerful tool to accurately
identify, separate, and protect native IVN communication [13].

This paper develops TSSDN further by integrating trans-
actional updates for synchronous real-time traffic and thereby
completes the set of fully programmable options for control-
ling all classes of in-vehicle communication via a central SDN
controller. Applying control programming to critical real-time
traffic significantly extends network security mechanisms for
in-vehicle communication. Our main contributions read:

1) We integrate TSN with SDN in a switching architecture
that enables central monitoring and control for all classes
of IVN communication without delaying real-time traffic.

2) We present and evaluate an approach to secure in-vehicle
TSSDN by introducing reliable static configuration and
secure adaptive communication.

3) We evaluate different approaches to embed in-vehicle
control flows in SDN and quantify the precision with
which the network can identify and isolate them.

4) We show that TSSDN can isolate in-vehicle control flows
in a shared environment, prevent unwanted traffic, and
significantly reduce the attack surface in a prototype built
from a production vehicle.

The remainder of this work is organized as follows. Sec-
tion II reviews the IVN, TSN, and SDN together with related
work on network security in cars. Section III introduces the
concept of TSSDN. SDN-enabled security measures for IVNs
are presented in Section IV. Section V validates the TSSDN

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

architecture in simulations. Section VI analyses the security
impact of our access-control in a prototype car and investigates
benefits and limits in attack scenarios. Finally, Section VII
concludes our paper with an outlook on future work.

II. BACKGROUND AND RELATED WORK

A. Evolution of In-Vehicle Networks

Modern IVNs connect sensors, actuators, and ECUs. Some
in-vehicle communication is static and well-defined, such as
motor control, while other is dynamic and not always active,
such as ADAS. All communication relations between the
installed ECUs are specified in a communication matrix. Each
control flow in the matrix has exactly one sender, a list of
receivers, and a unique identifier across the vehicle.

1) Traffic types: In-vehicle communications include peri-
odic control messages, sporadic events, and media traffic. Be-
sides the vehicle-specific traffic, there is also network control,
which is required for reconfiguration and service discovery,
and Best-Effort (BE) communication.

The different traffic classes have varying Quality-of-Service
(QoS) requirements. Control communication often uses small
frames in control loops with a fast period and may be very
susceptible to jitter which requires fixed latencies around
100 µs. Media traffic (of e.g., LIDAR systems) may require
several Gbit/s with guaranteed latencies around 10 ms. Safety-
critical messages may have no tolerance for packet loss and
require redundancy and hard deadlines. For some applications,
retransmission may compensate for packet loss, while with
cyclic control communication, retransmission is irrelevant.

2) Network topology: IVN topologies have evolved to
adapt to the increasing communication demands of automotive
applications [1], [2], [9], [14]. Initially (Figure 1a), ECUs
were grouped into functional domains such as chassis control,
powertrain, comfort, and infotainment using heterogeneous
bus systems such as Controller Area Network (CAN), Media
Oriented System Transport (MOST) and Local Interconnect
Network (LIN), which physically extended over large areas of
the vehicle. For cross-domain functions, a central gateway was
installed to transfer messages from one domain to another.

Today, cross-domain communication is increasingly re-
quired to enable features such as ADAS, and new sensors such
as high-resolution cameras need high bandwidths for commu-
nication. Figure 1b shows a domain controller topology which
uses a switched Automotive Ethernet [1] backbone that enables
fast cross-domain communication. Domain gateways integrate
legacy devices and forward messages between the domain
buses and the Ethernet backbone. Central compute units were
introduced as ‘High-Performance Computers (HPCs)’. They
offer much higher processing power than traditional ECUs and
bundle virtual functions of computationally intensive tasks.

Future vehicles will communicate with other vehicles, road-
side units (V2X) and the Internet. More and more functions
will be implemented in software and the number of OEM
model variants will increase. This requires higher flexibility
of software components and increases the dynamics of the
network. The zone model (1c) connects all ECUs with a zone
controller in physical proximity (e.g., front left), so that wiring

A

B

C

(a) Central Gateway

A

B

HPCHPC

C

(b) Domain Controller

C

A

B

C

C

A

A

B

B

HPCHPCHPCHPC

V2XV2X

(c) Zone Controller

ECUECU GatewayGateway SwitchSwitch EthernetEthernetDomain Buses
A
B
C

A
B
C

Domain Buses
A
B
C

Fig. 1: Evolution of the IVN from a central gateway topology
that enables cross-domain communication, to a domain con-
troller topology that connects network domains via an Ethernet
backbone, to a zone topology that splits the domain buses and
connects all ECUs to a zone controller in their vicinity.

can be reduced. AUTOSAR paves the way for the transition
to SOA with Scalable service-Oriented MiddlewarE over IP
(SOME/IP) [15]. Containerized services are under discussion
for larger ECUs [16]. This poses challenges for the network
as safety-critical traffic shares a wire with other traffic.

B. Time-Sensitive Networking in Cars

In-vehicle communication requires robust QoS for simulta-
neous real-time and BE traffic. There are several proposals to
add real-time capabilities to Ethernet, of which the standards
for Time-Sensitive Networking (TSN) (IEEE 802.1Q [3]) are
the most promising candidate for deployment in vehicles [17].

1) Real-time control: On the input and output ports of TSN
devices, gates can be opened to let frames through, or closed
to block them. A periodic Gate Control List (GCL) schedules
at what time a gate opens and closes. Meters at the ingress
and shapers at the egress complement the GCL functionality.

Ingress control (IEEE 802.1Qci) filters incoming frames per
stream and already discards packets that missed their time
slot. For frames that pass the ingress control, the switching
fabric decides to which output ports they are forwarded. Egress
control (IEEE 802.1Qbv) assigns frames to one of 8 priority
queues, each of which has a gate and may have a selection
algorithm, e.g., for bandwidth control. The first frame from
the queue with the highest priority whose selection algorithm
and gate allow the frame to pass is selected for transmission.

2) Communication classes: Real-time communication can
be synchronous (Time Division Multiple Access (TDMA))
or asynchronous as already defined in the TSN predecessor
Audio Video Bridging (AVB), which we compared in former
work [18]. Asynchronous real-time communication requires
bandwidth reservation of a predefined data rate per flow. The
bandwidth usage is controlled by the selection algorithm of
each queue at the egress, e.g., by Credit Based Shaping (CBS).
Synchronous real-time communication can be implemented
with a network-wide TDMA schedule for the GCLs. This can
minimize latency and jitter of real-time traffic, but requires
high-precision time synchronization (802.1AS-2020).

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

3) Schedule configuration: Scheduling in TSN has been
explored in the past [19] and applied to IVNs [20]. In a sched-
uled network, all endpoints and switches implement TDMA.
Schedules can include any selection of priorities, allowing
concurrent synchronous and asynchronous communication.

The calculation of a TDMA schedule is complex and
computationally intensive, therefore schedules are usually
computed offline. Still, a schedule can be updated during
runtime [20]. The NETCONF protocol (RFC 6241 [21]) can be
used with YANG data models (RFC 6020) for reconfiguration
of TSN modules (e.g., 802.1Qcp and P802.1Qcw).

There are still open challenges, such as simplifying recon-
figuration, and improving security to detect threats and initiate
countermeasures [17]. In this paper, we introduce dynamic
traffic control for TSN by integrating it with SDN and propose
security mechanisms to protect in-vehicle communication from
interference with unknown traffic.

C. Software-Defined Networking in Cars

SDN [4] separates the control logic (control plane) from the
underlying switches that forward the traffic (data plane) [22].
Network devices become simple forwarders that are pro-
grammed by a central SDN controller with global network
knowledge using open standards such as the OpenFlow proto-
col [23]. Controller applications implement the behavior of the
network, e.g., routing protocols. OpenFlow switches forward
incoming packets based on a programmable flow table. A flow
entry matches a subset of Layer 2 to Layer 4 header fields and
contains actions, such as discard, forward, or modify.

1) Real-time capability: SDN is considered generally suit-
able for real-time environments in terms of network configu-
ration latency [24], in particular when all flows are predefined
in the switches. Still, SDN needs to be extended to control
bandwidth reservation and scheduling for real-time flows.

Nayak et al. [8], [25] first mention Time-Sensitive Software-
Defined Networking (TSSDN) with dynamic scheduling and
routing techniques during runtime to improve robustness in
TSN, but only the hosts are scheduled and not yet the switches.
Thereby cross traffic can still impact the performance of real-
time traffic classes, as we investigated in former work [26].
We argue that a vital requirement for TSSDN is to adapt
configurations of network devices to changing real-time traffic.
Earlier [6], we integrated SDN and TSN for stream reservation
with OpenFlow without delay penalty for time-sensitive in-
vehicle communication. Gerhard et al. [27] implemented a
similar concept in a hardware environment of industrial plants.
Nam et al. [28] optimized TSN stream reservation with SDN
and could reduce the communication overhead for stream
reservation. Corresponding work has focused on either TSN
scheduling techniques (e.g., [20]) or dynamic reservation with
the SRP. In this paper, we extend our approach to TSSDN by
closing the gap left when updating the schedule in network
devices for synchronous traffic. This work completes the
design of a fully programmable TSSDN for IVNs.

Transactions are commonly used to coordinate critical
changes in distributed systems. The ACID properties (atom-
icity, consistency, isolation, and durability) guarantee consis-
tency of transactions despite possible errors. ACID transac-

tions can be used in SDN environments to maintain valid state
of the network [29], [30]. The impact of transactional network
updates on real-time traffic has not been investigated yet.
We compare two methods for transactional network updates
in real-time systems, which both maintain a consistent state
across distributed network devices.

2) Automotive use-cases: SDN promises to reduce com-
plexity and increase the adaptability of networks [22]. Halba
et al. [5] showed how SDN can improve the safety and
robustness of IVNs through dynamic rerouting. Haeberle et
al. [7] presented an IVN concept that reduces the complexity
of the vehicular E/E architecture based on SDN. In previous
work [31], we evaluated the performance of existing SDN
controller implementations with respect to IVN requirements
and found that all implementations lack important safety
requirements, such as guaranteed response times, but could
confirm that SDN controllers can be used in vehicles with the
right modifications. To the best of our knowledge, no related
work has analyzed the use of SDN to secure the IVN.

In this paper, we investigate how SDN flow control can
improve the security of the IVN by precisely separating in-
vehicle communication. Combining TSN and SDN can ensure
that real-time requirements are met.

D. In-Vehicle Network Security

Current vehicles are vulnerable to manipulation by third par-
ties, which has been demonstrated in the field [10]. Checkoway
et al. [32] provide a fundamental analysis of the automotive
attack surface and systematically show how a variety of inter-
faces can be used to gain malicious access to in-car devices.
Manipulation of the IVN and its ECUs can compromise the
safety of the vehicle, putting passengers at risk.

1) Security assessment: Assessing security mechanisms is
difficult because the risk of unknown vulnerabilities is hard to
predict [33]. A common method for evaluating IVN security is
to analyze dark-side scenarios [34], which are based on known
vulnerabilities and attack targets. These can be used to assess
the probability, severity, and controllability of attacks [35].
Based on an attack tree created from real incidents, Longari
et al. [36] evaluated how CAN network topologies can be
hardened by introducing additional gateways. In this work,
we systematically analyze the separation of in-vehicle control
flows in Ether-networks and use attack scenarios to show the
benefits and limitations of our network security mechanisms.

2) Taxonomy of attacks and defenses: Attacks on IVNs in-
clude Denial of Service (DoS), replay, spoofing, malware, and
falsified-information attacks [14], [37]. They can be grouped
in alter attacks that aim to modify data, listen attacks that aim
to monitor data, disable attacks that aim to deny services, and
forge attacks that aim to insert incorrect data [35].

Defensive measures can be divided into attack prevention,
detection, and mitigation [37]. The main security goals for
IVNs are (i) availability, which ensures that resources and
services are accessible; (ii) integrity, which ensures the accu-
racy and completeness of data; and (iii) authenticity, which
aims at the verifiability of data sources and sinks [14], [35].

3) Security mechanisms in IVNs: Firewalls and access con-
trol mechanisms can prevent attacks with stateful inspection,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

C
o
n
tr

o
l

P
la

n
e

D
a
ta

P
la

n
e

Southbound API

TSN Sender

TSN
Egress
Control

GCL
Schedule

SR
Table

Egress
Port

Talker
Egress
Port

Talker

TSSDN Switch 1

TSN
Ingress
Control

SDN
Switching

Fabric

TSN
Egress
Control

NETCONF
Server

OpenFlow
Client

Ingress
Port

Egress
Port

Flow
Table

GCL
Schedule

SR
Table

TSN Receiver

TSN
Ingress
Control

Listener
Ingress
Port

GCL
Schedule

SR
Table

TSSDN Switches
2 - N...

LegendController

Applications

NETCONF
Client

OpenFlow
Server

Communication
Relations

Communication
Relations

Security
Policies
Security
Policies

PathfinderPathfinder SchedulerScheduler Network State

BE & RT
Flow Control

Access
Control List

...BE & RT
Flow Control

Access
Control List

...

Controller

Applications

NETCONF
Client

OpenFlow
Server

Communication
Relations

Security
Policies

Pathfinder Scheduler Network State

BE & RT
Flow Control

Access
Control List

...
SDN ComponentSDN Component

TSN ComponentTSN Component

SDN StateSDN State

TSN StateTSN State

Fig. 2: Integrated network architecture of TSN and SDN. At the data plane, packets flow from a sending to a receiving TSN
endpoint through switches that combine TSN ingress and egress control with SDN forwarding. At the control plane, TSN
functions such as scheduling are integrated with common SDN controller functions such as path finding using a global network
view. Network applications control real-time and best-effort flows simultaneously and enforce security policies.

rate limiting, and filtering [38]. Gateways can filter messages
between different sections of the IVN [39] and analyze event
chains based on behavior specifications [40]. In this work,
we focus on network defense mechanisms that rely on precise
SDN-based flow separation in the forwarding pipeline without
additional processing resources.

Anomaly detection can identify ongoing attacks in the
network [41], e.g., using machine learning algorithms to detect
anomalies on the CAN bus [42]. In previous work [43], we
presented an anomaly detection system using the TSN ingress
control that can operate with zero false-positives based on a
precise traffic specification. The reported security incidents
from different detection mechanisms can be combined [44]
and analyzed for entire vehicle fleets in the cloud to detect
correlations, e.g., in terms of affected devices [45].

Integrity and authenticity can be ensured with authentication
and encryption methods suitable for IVNs [9], [46], across
all communication systems, such as CAN [47], FlexRay [48],
and Ethernet, e.g., MACSec (IEEE 802.1AE [49]) on the
MAC layer. Identity and credential management enables the
verification of entities such as ECUs [50]. Encryption, how-
ever, cannot protect data flows from all network attacks. In-
vehicle ECUs have limited computing power which limits the
resources for security features. In addition, established and
verified ECUs are used over many vehicle generations. Our
network-centric approach helps to secure ECUs with limited
computing power and allows secure reuse of legacy devices
while remaining compatible to application layer encryption.

4) Software-Defined Networking: Flexible security solu-
tions will be beneficial to cope with the growing dynamics
of the IVN [51]. Software-defined security elements can be
easily adapted to the situation at hand [14]. SDN can improve
network security by detecting and preventing attacks [12]. In
previous work [13], we showed how the precise flow control
of SDN can be used to protect IVN control communication
that is precisely specified in the communication matrix.

In this work, we use SDN mechanisms that protect IVN

communication from malicious access. Enabling detection of
unknown flows and countermeasures through reconfiguration.

III. TIME-SENSITIVE SOFTWARE-DEFINED NETWORKING

Time-Sensitive Software-Defined Networking (TSSDN) in-
tegrates the TSN and SDN concepts on the control and data
plane as shown in Figure 2. On the data plane, forwarding
follows TSN ingress and egress control together with the SDN
flow switching rules. On the control plane, real-time traffic
control commands for switches are perceived and processed by
the SDN controller. An open southbound API enables vendor-
independent programming of TSN and SDN components.

A. Data Plane Architecture

The TSSDN data plane connects the TSN endpoints via
switches that integrate the SDN forwarding pipeline with the
TSN real-time control. Each switch contains a flow table, an
Stream Reservation (SR) table, and a Gate Control List (GCL).

Frames arrive at the TSN-controlled ingress, which applies
filters and time checks. After a frame passed the ingress
control, the SDN switching fabric performs a lookup in its
flow table for forwarding. If a matching entry is found, the
predefined actions are performed and the packet is forwarded
to its specified ports. The TSN egress control of the port
then shapes the outbound traffic. If no matching rule exists,
the packet is discarded by default. Most controllers, however,
install a rule to receive these packets.

B. Control Plane Operations

The SDN paradigm mandates that control plane functions
are offloaded from the switches to a central controller. The
controller combines common SDN tasks such as address learn-
ing and routing with TSN functions such as stream reservation
and scheduling. Network designers implement applications to
control the behavior of the network through the controller
using OpenFlow or NETCONF. A network application can
react to messages and push updates to the data plane, thereby

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

leveraging the abstract network view, and knowledge about the
IVN as described by the communication matrix and security
policies. TSN traffic differentiation will operate as follows.

1) Best-effort flow control: BE flow control remains unal-
tered to traditional SDN. OpenFlow-enabled switches forward
packets of unknown flows to the controller. Network applica-
tions decide whether to discard the packet, reply directly, or
forward it. For the latter, the application determines a route
and installs flow rules on the data plane. Thereafter, network
devices can forward packets of this flow independently.

2) Asynchronous real-time flow control: For asynchronous
real-time flows, senders and receivers announce their resource
requirements across the network using the Stream Reserva-
tion Protocol (SRP). Originally, TSN uses a fully distributed
control plane of the switches. Talkers announce streams by a
Talker Advertise, which contains information about the stream
and its bandwidth demands. Switches update their SR table
and re-broadcast the announcement. Hosts willing to subscribe
to a stream send a Listener Ready to the talker, and all devices
along the path reserve bandwidth for the stream if available.

The conceptual architecture of the centralized stream reser-
vation model (802.1Qcc) harmonizes well with the SDN
paradigm. A Central Network Controller (CNC) signals the
stream reservation while the communication mechanism be-
tween the controller and the network devices is not specified.
We map this centralized model onto the OpenFlow protocol,
detailed in [6]. Again, talkers and listeners announce streams
using the SRP. Network devices forward all SRP packets to
the SDN controller. A network application checks whether
the available bandwidth suffices and creates a flow entry that
matches the stream. Flow entries are updated as listeners leave
or join. Our controller implementation uses an OpenFlow
experimenter extension to reserve bandwidth in the SR table
on the switches. With this, forwarding devices can identify the
stream, forward it correctly, and control the bandwidth on the
egress ports, e.g., with Credit Based Shaping (CBS).

3) Synchronous real-time flow control: Synchronous real-
time flows are coordinated between different transmitters
across multiple links. Senders periodically transmit frames
of a known maximum size in their time slot. A periodic
Gate Control List (GCL) schedule opens and closes specific
priority gates of each output port. Time slots are shifted for
devices along the path according to the packet transmission
delay, which enables minimal end-to-end latency and jitter, but
requires high-precision time synchronization (802.1AS-2020).

The complex calculation of TDMA schedules is commonly
performed offline. Such a static schedule is not efficient for
bandwidth usage, since bandwidth remains reserved even if
synchronous services are not running. In addition, communi-
cation changes are not supported but may occur after updating
or transitioning applications between devices.

In TSSDN, the controller can dynamically (re)calculate the
GCL schedule and paths for all flows when synchronous traffic
changes. Table I lists the four basic operations of changing
the network configuration along with its mandatory order of
execution, which we discuss in detail below. Time slots can
be added or removed, and moved forward or backward within
the period so that traffic is transmitted earlier or later. More

TABLE I: Basic operations for configuring scheduled traffic
and their execution order on network devices along the path.

Schedule update basic operation Order of execution

Add flow and new time slot From destination to source
Remove flow and existing time slot From source to destination
Shift time slot to earlier point in the period From source to destination
Shift time slot to later point in the period From destination to source

Unlock phase

Commit 1/N

Update Switch 1

Acknowledge commit

Commit N/N

Update Switch N

Acknowledge commit

[Ordered]

Commit execution timestamp

Commit execution timestamp

Timestamp accepted

Timestamp accepted

Release commit

Release commit Wait for execution

Synchronous update

[Synchronous]
alt

Commit phase

Unlocking of the switches

Reconfiguring switches (e.g. GCL, flow table)Configure phase

Incremental locking of the switches in deterministic orderLock phase

Controller Switch 1 Switch N

Fig. 3: Synchronous and ordered network-wide transactional
update sequence.

complex operations can combine these operations, such as
rerouting a flow (add and remove) or shifting time slots to
make room for a new flow (shift and add).

C. Transactional Updates for Real-Time Communication

The GCL is scheduled per priority queue, not per flow.
Adding flows to TDMA-scheduled priorities without updating
GCL can lead to overflowing queues and missed deadlines
for critical traffic. Thus, the dynamic nature of SDN flow
control is inappropriate to control synchronous real-time com-
munication. In contrast, the NETCONF protocol is particularly
suitable as it supports transaction-oriented configurations. De-
vice configurations can be locked to guarantee isolation. A
candidate configuration holds a copy of the device configu-
ration and can be modified and validated before applying the
changes. If an error occurs, the entire transaction is rolled
back, maintaining the previously valid device state; a commit
applies the changes to the running configuration otherwise.

NETCONF transactions, however, only account for oper-
ations on a single device. Transactions that span multiple
devices are required to avoid queue overflow and packet loss
during schedule reconfiguration. For example, if a time slot
is moved to an earlier point in the schedule while a packet

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

L2 - Ethernet IEEE 802.1Q

EtherType
(2 Byte)

MAC Src
(6 Byte)

Q-Tag (PCP, VID)
(4 Byte)

MAC Dst
(6 Byte)

Data

Payload
(42 – 1500 Byte)

Data

L2 - Ethernet IEEE 802.1Q

EtherType
(2 Byte)

Embedded Type

MAC Src
(6 Byte)

Sender

Q-Tag (PCP, VID)
(4 Byte)

CF Priority CF Domain

MAC Dst
(6 Byte)

CF ID

L5 - SOME/IPL4 - UDP

Msg. ID
(4 Byte)

Payload
(0-1400 Byte)

CF ID Data

L3 - IPv4

DSCP
(6 Bit)

CF Priority

IP Src.
(4 Byte)

Sender

IP Dst.
(4 Byte)

CF Domain

Src. Port
(2 Byte)

SOME/IP

Dst. Port
(2 Byte)

SOME/IP

(a) Hidden embedding inside a SOME/IP application layer tunnel — the network cannot match the hidden control flow identifier.

L2 - Ethernet IEEE 802.1Q

EtherType
(2 Byte)

MAC Src
(6 Byte)

Q-Tag (PCP, VID)
(4 Byte)

MAC Dst
(6 Byte)

Data

Payload
(42 – 1500 Byte)

Data

L2 - Ethernet IEEE 802.1Q

EtherType
(2 Byte)

Embedded Type

MAC Src
(6 Byte)

Sender

Q-Tag (PCP, VID)
(4 Byte)

CF Priority CF Domain

MAC Dst
(6 Byte)

CF ID

L5 - SOME/IPL4 - UDP

Msg. ID
(4 Byte)

Payload
(0-1400 Byte)

CF ID Data

L3 - IPv4

DSCP
(6 Bit)

CF Priority

IP Src.
(4 Byte)

Sender

IP Dst.
(4 Byte)

CF Domain

Src. Port
(2 Byte)

SOME/IP

Dst. Port
(2 Byte)

SOME/IP

(b) Exposed embedding in the Ethernet header — the network can match the full control flow context.

Fig. 4: Different strategies for embedding Control Flow (CF) context including the identifier (ID), domain, and priority on
different layers. The red outline indicates the matchable header fields in the network.

is between two network devices, the packet will miss its time
slot on the next device. The packet is then sent in the next
cycle, causing a delay for all upcoming traffic of that priority.

The TSSDN controller manages network-wide transactions
in four phases (see Figure 3): lock, configure, commit, and
unlock. All devices are locked in deterministic order (e.g., by
MAC address) to prevent deadlocks. Candidate configurations
are configured and validated on all devices. The commit is
then orchestrated and all devices are unlocked afterwards. We
identified two ways to coordinate a commit across devices
consistently without packet loss or delays during configuration.

For synchronous updates, the controller calculates the
activation time of the changes and performs a two-stage
commit, first ensuring that each switch is ready and will accept
the timestamp, then releasing the commit for execution on all
devices at the arranged time. The timestamp can be a period
number, or an absolute, TSN synchronized time. It should be
chosen so that no scheduled traffic is forwarded in the network
devices during the commit. This way, synchronous updates can
support all combinations of basic operations in one transaction.

For ordered updates, the order of commit execution is de-
termined depending on the reconfiguration, and the controller
waits for confirmation of commit execution on one device to
commit the next devices. Table I shows the execution order
for basic operations. Time slots are added from the destination
of the new flow towards the source to ensure that no packet
enters the network before its time slot has been added on all
devices. Removing a time slot starts at the source and ends
at the destination to ensure that no packets remain on the
network. To shift a slot ahead in time, the changes proceed
from the source to the destination to ensure that packets are
early for their time slots rather than too late. Shifting to a later
point proceeds in reverse order. This tells us that the update
order is application-specific. Updates that combine multiple
operations with different commit orders must be split into
multiple transactions, which we analyze in Section V.

Ordered updates rely on standard NETCONF commit man-
agement, but synchronous updates also require timing the
commit execution. In addition, we assume that commit execu-
tion on forwarding devices is executed atomically and always
succeeds. Although both approaches guarantee interference-
free communication, there are still open problems that remain
for future work: The start time of a transaction must be set so
that all changes proceed before the traffic starts – we set the
time accordingly in our simulation. A protocol is missing for

senders of synchronous traffic to inform the controller about
characteristics of their traffic, e.g., packet size, frequency, start
and stop times – we assume that the controller knows them.

IV. SECURING TIME-SENSITIVE SOFTWARE-DEFINED
IN-VEHICLE NETWORKS

For a specific car, critical in-vehicle communication is
deterministically defined, which enables the controller to steer
traffic precisely based on its IVN knowledge including ECUs,
control flows, and timing information from the communication
matrix. SDN switches identify flows in the OpenFlow pipeline
by matching packet header fields from Layer 2 to Layer 4.

A. Embedding Strategies for Control Flow Information

A Control Flow (CF) is a sequence of related messages
with the same unique identifier in the vehicle – called a CF
ID. This could be a CAN message, for example. A CF is
sent from a single origin and follows a point-to-multipoint
relationship to reach one or more receivers. The priority of a
CF is determined by its deadline and criticality, e.g., safety
critical messages have the highest priority.

Gateways forward data between bus systems and the Eth-
ernet backbone. Therefore, the CF is repackaged, e.g., from a
CAN frame to an Ethernet frame. Future Ethernet communi-
cation in vehicles can exploit the entire stack to embed control
flows. Figure 4 presents two examples of CF embedding on
different layers. Each CF has an identifier (ID), a sender, a
priority and a domain. Depending on the repackaging, this
information can be hidden from or exposed to the network.

The hidden embedding tunnels a CF using an application
layer protocol, which is the current state of the art. Figure 4a
shows an example that uses SOME/IP. The CF ID is encoded
in the message ID field and the data is embedded as payload.
The example uses reserved UDP ports for SOME/IP traffic.
The Differentiated Services Code Point (DSCP) is populated
with the CF priority. The Ethernet header is generated by the
network stack, which can be configured to map the DSCP to
a Priority Code Point (PCP) for QoS on Layer 2. All CFs in
a domain are sent to the same IPv4 multicast address.

In contrast, embedding can happen in a completely exposed
way. Here, the sender embeds the context of the CF only in
packet header fields that are used for the forwarding decision
in the network (Layer 2 to Layer 4). Figure 4b shows an
example for exposed embedding in the Ethernet header. For a
discussion on the advantages of an embedding on the lowest

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

possible layer see Section IV-D. The CF ID is encoded as a
multicast destination MAC address. Virtual LANs are created
to separate bus domains. The CF priority is mapped on the
PCP for Layer 2 QoS differentiation. We embed the message
data and length into the Layer 2 payload. The EtherType
specifies the embedded data type, e.g., a custom type for
embedded CAN data.

B. Separating In-Vehicle Control Flows in the Network

The embedded context information within the packet header
fields as used for the forwarding decision is outlined in red in
Figure 4. A Network Flow (NF) is a sequence of contiguous
packets of one or more CFs that have identical matchable
header fields and are therefore treated equally by the network.
A NF is transported from a specific source to a destination
in the network. Using multicast, a NF can reach multiple
sinks, which is a common use case in IVNs, since the same
information is often needed at different ECUs. The choice of
the embedding approach is a key factor in distinguishing CFs.

With hidden embeddings, a separation by domain can be
achieved if a domain identifier is encoded in the destination
IP address. This creates a domain tunnel that forms a point-
to-multipoint NF per sender and domain, which is the current
state of the art. The tunnel is identified by the source and
destination IP addresses and UDP ports. The NF destinations
are the group of receivers of all CFs in the tunnel. The CFs
of a domain cannot be differentiated by the network.

To improve the separation of CFs with hidden embeddings,
a finer-grained separation by topic can be created. A topic
can group a small number of related CFs, e.g., all commu-
nication for the engine or for lighting control. In CAN bus
architectures, each CF belongs to exactly one domain bus.
Introducing a new domain for CFs also means creating a new
physical bus. On an Ethernet backbone, a new topic requires
only a new tunnel on an existing physical link. As cross-
domain communication increases, it seems advisable to form
smaller groups of CFs than the original vehicle domains. The
topic identifier can be encoded in the multicast IP address
instead of the domain identifier so that each topic has a point-
to-multipoint NF for each sender in the topic.

An exact separation by message type can only be achieved
via exposed embedding. Each CF has its own point-to-
multipoint NF, which can be identified and separated in the
network by matching the multicast destination MAC address.

C. Reliability and Security Considerations

Reliable communication is essential for safety-critical traffic
in the vehicle. Basic driving functionality must be guaranteed
in order to achieve a safe state in an emergency, e.g., stopping
at the edge of the road. A static configuration for safety-critical
communication can be verified offline to ensure its correctness
under all circumstances, and redundant paths can be confirmed
to increase resilience.

The static flow and timing configuration is loaded in each
forwarding device during boot, which reduces startup times
because these flows are not set up via the controller. For
changing this static configuration a firmware update is required

as the SDN controller can not alter it in any way. To achieve
this, a protected separate flow table can be used that is always
matched before dynamic rules. For the TSN configuration, the
priority queues can be partitioned in a set of static and dynamic
queues [52]. This allows the addition of new flows in dynamic
priorities and protects the static priorities by design. In the
event of a controller failure or critical security incident, the
static configuration serves as a fail-operational configuration.

Dynamic traffic that is not always needed or where the
communication partners are not known before runtime can be
controlled by the SDN controller. The controller can verify
that the new communication is allowed and identify senders
and receivers to create a precise flow that matches the header
information from Layer 2 to Layer 4. In addition, bandwidth
or time slots can be reserved for these flows. An Access
Control List (ACL) can define additional patterns that whitelist
or blacklist dynamic flows. For example, complete protocols,
such as ARP or ICMP, can be (dis-)allowed in the IVN or
dynamic communication can be blocked for some hosts.

D. Impact on In-Vehicle Network Design

When Control Flow (CF) information is embedded at the
application layer, it cannot be used for forwarding decisions
without violating the OSI layers. In SDN, exposed embedding
of the CF ID in any of the matched header fields from Layer 2
to 4 will enable a precise separation by message. Still, there are
several advantages of embeddings on the lowest possible layer.
Layer 2 information is only valid in the local IVN, so Ethernet
embeddings are not routable which can make attacks from
outside the vehicle more difficult. In addition, embeddings in
the Ethernet header support the use of non-SDN switches with
the same separation. Embedding options are also affected by
encryption, as the layers used for the forwarding decision are
useless if encrypted.

When small control messages are embedded into Ethernet,
their aggregation is an approach to reduce overhead. For
example, a CAN message has a payload of 8 bytes, while
an Ethernet frame has a minimum size of 64 bytes with
a minimum payload of 42 bytes. Multiple CAN messages
can be sent in the same frame to save bandwidth, but this
also delays messages, increasing latency and jitter [53]. With
different embedding approaches, aggregation can be hindered,
e.g., exposed embeddings make aggregation impossible.

Control information is often transmitted in cycles with a
similar data size. TSN schedules can be more efficient the
better CFs can be distinguished in the network. With exposed
embeddings, timing can be determined more accurately, re-
sulting in lower TDMA reservation overhead. On the other
hand, schedule computation overhead increases as the number
of small time slots increases. Aggregation complicates timing
computation due to varying sizes and intervals of packets.

V. VALIDATING THE TSSDN SWITCHING ARCHITECTURE

The key performance characteristic of the proposed TSSDN
architecture is its seamless integration of SDN control with
real-time communication. We evaluate this in a simulation
environment (see Figure 5) based on the OMNeT++ sim-
ulator [54]. Our model Software-Defined Networking for

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

OMNeT++
Discrete Event Simulator

FiCo4OMNeT
CAN / FlexRay

SignalsAndGateways
CAN<->CAN / Ethernet<->CAN

SDN4CoRE
NETCONF / TSN + SDN

INET framework
Ethernet / Internet Protocol / TCP / UDP

OpenFlow
OpenFlow

CoRE4INET
IEEE 802.1Q / TSN /AVB / AS6802

INET framework
Ethernet / Internet Protocol / TCP / UDP

OpenFlow
OpenFlow

CoRE4INET
IEEE 802.1Q / TSN /AVB / AS6802

Fig. 5: Simulation environment used for the evaluation avail-
able as open source, see github.com/CoRE-RG/SDN4CoRE.

Communication over Real-Time Ethernet (SDN4CoRE) [55]
implements the proposed architecture based on the INET
framework [56], the OpenFlowOMNeTSuite [57], and our
frameworks for IVNs [58]. The models outlined in red are
maintained by our research group and published as open
source at sim.core-rg.de and github.com/CoRE-RG. We use
a specific scenario with carefully designed TDMA traffic and
varying amounts of cross traffic to analyze the impact of SDN
control and schedule reconfiguration on real-time traffic. This
scenario is also available in the SDN4CoRE repository.

A. Network Topology and Traffic Configuration

Figure 6 shows our network for the evaluation. It consists of
two TSSDN switches, one SDN controller, and four sources
(S1-S4) sending to one destination. All links have a bandwidth
of 100 Mbit/s. With this setup we can analyze the timing of
real-time communication under the load of cross traffic across
multiple links and verify that timing requirements of TSN
are also met in TSSDN. For comparison, we consider the
identical scenario with pure TSN switches that perform stream
reservation in a distributed manner and have a pre-configured
TDMA schedule, which is the current state of the art.

All sources send BE traffic (PCP 0) with varying cycle and
frame sizes. S1, S2, and S3 send synchronous traffic each at
an individual priority (PCP 5 to 7), which are scheduled in
a TDMA fashion with a period of 1 ms. S1 and S2 send one
maximum Ethernet frame per period and S3 sends two. S4
sends a maximum Ethernet frame every 1 ms as asynchronous
traffic of medium priority (PCP 4) directly after the Stream
Reservation (SR) is completed.

The timeline in Figure 7 visualizes the start and stop times
of real-time communication. For asynchronous traffic, the
controller performs the SR using OpenFlow. Prior to changes
in synchronous traffic, we assume that the SDN controller has
been informed and the Gate Control List (GCL) schedule is
reconfigured (C1 – C6) via NETCONF in the period before
the first or after the last frame of the altering flow. In the pure
TSN version, the GCL schedule is statically configured and
the switches perform the SRP of TSN independently.

Our scenario contains all basic operations for reconfiguring
the network, which follows from the changes in synchronous
real-time communication. Synchronous traffic is added to an
empty schedule (C1) and to an existing schedule (C2). The
time slot for S3 is inserted between the time slots for S1 and
S2 (C3), so that the time slot for S2 needs shifting to an earlier
time and for S1 to a later time in the period. This allows us
to analyze the impact of combining multiple basic operations
with different mandatory commit sequences in one transaction.
Each synchronous transmitter stops after sending for 300 ms.

Destination of
all Traffic

Best-Effort
Cycle: 0.5-1ms
Size: 64-1522B

Source 3 (S3)

Best-Effort
Cycle: 0.5-1ms
Size: 64-1522B

Source 4 (S4)

SDN Controller

Switch Left Switch Right

Best-Effort
Cycle: 0.5-1ms
Size: 64-1522B

Source 1 (S1)

Best-Effort
Cycle: 0.5-1ms
Size: 64-1522B

Source 2 (S2)

Synchronous
Cycle: 1ms
Size: 3044B

Synchronous
Cycle: 1ms
Size: 1522B

Asynchronous
Cycle: 1ms
Size: 1522B

Synchronous
Cycle: 1ms
Size: 1522B

Fig. 6: Evaluation network with two TSSDN switches, one
SDN controller, four sources and one destination connected via
100 Mbit/s links. Sources 1 to 4 send best-effort, synchronous
and asynchronous real-time traffic that differs in transmission
cycle and Ethernet frame size.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Simulation time [s]

SR C1 C2 C3 C4 C5 C6

All Sources Best-Effort
Source 4 Aynchronous

Source 1 Sync.
Source 2 Sync.

Source 3 Sync.

Fig. 7: Timeline indicating the start and stop times of traffic
with their stream reservation (SR) or configurations (C1–C6).

The network removes time slots from existing schedules (C4,
C5) and returns to an empty schedule at the end (C6).

B. TDMA Schedule and Worst-Case Analysis

We determine periodic TDMA schedules that coordinate
synchronous flows in the 1 ms period. The transmission win-
dows of synchronous traffic at each source are shown in
Figure 8 for the entire period. Figure 9 displays the GCL
schedule of the two switches. The pure TSN network is pre-
configured on startup with configuration C3, which includes
all synchronous flows. In the TSSDN variant of the network,
the GCL configuration is updated according to the active
synchronous traffic (C1 to C6). At the beginning, all gates
are open because there is no synchronous traffic yet.

For each sender, our GCL configuration exclusively as-
signs one time slot to its 802.1Q priority. A Guard Band
(GB), in which all gates are closed, is added to ensure that
synchronous traffic cannot be delayed by other traffic. All
gates are closed so that the transmission time of a maximum
Ethernet frame (1522 B + 8 B preamble) can be completed.
This takes 123.36 µs on a 100 Mbit/s link, including the inter
frame gap ()ifg = 0.96 µs). To ensure timely transmission, the
GCLs at the senders are also scheduled with a GB before their
transmission windows (see Figure 8).

Synchronous traffic, which is precisely scheduled, cannot
be delayed as it is protected by a GB. Its maximal end-to-
end latency)L can be analytically calculated equivalent to the
best-case latency when all clocks are perfectly synchronized.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

Source 1: GB S1
Source 2: GB S2
Source 3: GB S3

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time slots in the GCL period [ms]

Fig. 8: Transmission windows of the synchronous sources in
the period of the Gate Control List (GCL) schedule.

0 s to 0.2 s: Initial State
Switch Left All Open
Switch Right All Open

0.2 s to 0.3 s: C1 add Source 1 Synchronous
Switch Left GB S1
Switch Right GB S1
0.3 s to 0.4 s: C2 add Source 2 Synchronous
Switch Left GB S2 S1
Switch Right GB S2 S1
0.4 s to 0.5 s: C3 add Source 3 Synchronous
(TSN static configuration)
Switch Left GB S2 GB S1
Switch Right GB S2 S3 S1
0.5 s to 0.6 s: C4 remove Source 1 Synchronous
Switch Left GB S2
Switch Right GB S2 S3
0.6 s to 0.7 s: C5 remove Source 2 Synchronous
Switch Left
Switch Right GB S3
0.7 s to ∞: C6 remove Source 3 Synchronous
Switch Left
Switch Right

0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time slots in the GCL period [ms]

Fig. 9: Gate Control List (GCL) schedule of the two switches,
which is reconfigured according to the changes in synchronous
traffic (C1 to C6). The time slots for S1, S2 and S3 are
scheduled along their path. Guard Bands (GB) with all gates
closed are added to prevent delays from competing traffic. The
TSN-only version is statically configured as depicted in C3.

In our evaluation, we take a closer look at the latency of S1.
The calculations for S2 and S3 are not shown in detail.

Reconfiguration C1 adds the synchronous flow from S1 at
0.2 s simulation time. S1 transmits one full size frame 450 µs
after the start of each period. A time slot is reserved along
the path. After the delay for transmission ()trans = 122.4 µs)
and forwarding ()fwd = 3 µs) the frame arrives at the output of
Switch Left at 575 µs and its time slot begins. A GB is inserted
before it. All gates are opened again when the frame completes
transmission at 700 µs and its time slot at Switch Right begins.
It ends at 825 µs and the GCL is configured accordingly. The
analytic end-to-end latency bound for synchronous traffic from
S1 with configuration C1 ()S1

L-C1) reads:

)S1
L-C1 = 3 ∗)trans + 2 ∗)fwd

= 3 ∗ 122.4 µs + 2 ∗ 3 µs = 373.2 µs
(1)

The controller activates C2 when the synchronous traffic
from S2 starts at 0.3 s simulation time. S2 sends a full size
frame 250 µs after the start of each period. Thus, traffic from
S2 arrives at 375 µs at the output of Switch Left. To save
bandwidth the time slot of S2 is scheduled to finish exactly
before the time slot of S1. The GB is shifted accordingly.
This introduces a queueing delay of 75 µs. The frame arrives at
Switch Right at the beginning of its time slot to be transmitted.
This results in a latency bound of)S2

L-C2 = 448.2 µs.
The schedule is reconfigured for S3 at 0.4 s simulation time

(C3). S3 sends two full size frames 500 µs after the start of
each period. This new schedule minimizes the latency of S3
()S3

L-C3 = 247.8 µs) by adding a time slot on Switch Right from
625 µs until 875 µs. This requires to shift the time slots of S1
to a later time and S2 to an earlier time, which also changes
their latency bound. The time slot for S2 is now 75 µs earlier
on both switches which also makes up for the queueing delay
and reduces the latency bound to)S2

L-C3 = 373.2 µs. The time
slot for S1 is delayed by 175 µs which introduces a queuing
delay ()queue) and changes the latency bound to

)S1
L-C3 = 3 ∗)trans + 2 ∗)fwd +)queue

= 3 ∗ 122.4 µs + 2 ∗ 3 µs + 175 µs = 548.2 µs
(2)

Asynchronous traffic can be delayed by cross traffic and the
TSN gates. We examined the coexistence of scheduled and
bandwidth reserved traffic and the impact of cross traffic in
previous work [26], [59]. In the worst-case, the asynchronous
traffic from S4 is delayed by one full size BE frame ()BE max)
and the inter frame gap ()ifg) on every hop. In our scenario, it
can also be delayed through the schedule at each port by the
duration of the GB and the time slots of synchronous traffic.
The schedules for Switch Left and Right are aligned so that a
frame cannot be delayed on both hops. For the configuration
C3 this results in a maximum interference through the schedule
of)mi = 616.8 µs. The analytical end-to-end latency bound for
the asynchronous traffic from S4 ()S4

wc) reads:

)S4
Lwc

=)mi + 3 ∗ ()BE max +)ifg +)trans) + 2 ∗)fwd (3)
= 616.8 µs + 3 ∗ (122.4 µs + 0.96 µs + 122.4 µs) + 2 ∗ 3 µs
= 1.36 ms

C. Impact of SDN on Real-Time Flows

Figure 10 shows the minimum, maximum and average end-
to-end latency for one exemplary flow of each traffic class from
1 s simulation runs. To ensure that the data is not affected by
the timing of traffic in the period, the minimum, maximum,
and average from simulations with 20 different seeds for the
start time of the asynchronous traffic are shown. The queues
in our network are infinite so all packets will arrive at there
destination eventually and no packets are lost.

All traffic shows identical or lower end-to-end latency in
the TSSDN variant than in pure TSN. This is due to the re-
scheduled time slots (C1 to C6) that match the synchronous
traffic exactly without surplus bandwidth. Given the same
configuration for both variants (after C3), the synchronous
traffic of S1 has the same constant latency corresponding to
the analytical bound (see Equation 2). Before C3 is applied, S1
has a smaller latency in TSSDN as calculated in Equation 1.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 10

S4 starts sending asynchronous traffic after the Stream
Reservation (SR) at 0.1 s. Again, latency is lower with the
TSSDN variant because less bandwidth is reserved for the
scheduled traffic. The latency varies largely for the 20 different
seeds for the start time in the period, which is to be expected
since the frame delays fluctuate by the schedule. Still, the max-
imum latency never exceeds the analytic bound of Equation 4.

The BE traffic flows without worst-case guaranties. Frame
sizes vary between minimal and maximal Ethernet frames,
which explains the small minimum latency. In TSSDN, BE
flows experiences a larger delay if set up by the controller.

The latency for flow installation is avoided for asynchronous
traffic with the Stream Reservation Protocol (SRP). As such
flows are already installed in the TSSDN switches during the
SR, no further inspection by the SDN controller is needed.
Thus, additional latency ceases for TSSDN after the SR.

Table II compares the SR duration of TSN and TSSDN,
which vary largely with the 20 seeds (uniformly distributed
over the 1 ms period of the schedule). The TSSDN variant
has a lower maximum delay when set up at simulation time
0.1 s, since no gate control schedule is active at this time. We
also ran the simulation in TSSDN starting the SR at 0.45 s
with configuration C3 active and thus the same schedule as in
the TSN-only variant. The results show an additional delay in
TSSDN caused by the communication between the switches
and the controller. This is in agreement with our previous
findings for SR in TSSDN [6] but extends insights to the
impact of scheduled traffic on SR sent as BE traffic in both
cases, TSSDN and plain TSN.

D. Impact of Transactional Updates

The impact of the synchronous and ordered update methods
on the latency of the scheduled traffic is shown in Figure 11.
We vary the commit execution time to find the worst case for
each configuration method. For simple unordered reconfigu-
ration, the result is completely random and not shown. For
synchronous updates in both switches, the latency between
two configurations is constant for each interval and matches
the calculated bounds obtained in Section V-B. After C3, the
latency of S1 and S2 changes as time slots are shifted for the
additional flow from S3.

The ordered updates behave identical for all transactions
except for C3, since this requires only one commit order. The
update sequence for C3 is set to change Switch Left first and
then Switch Right, which agrees with the commit order for
shifting the time slot from S2 to an earlier time and adding
a time slot for S3, but conflicts with the commit order for
shifting S1 to a later time. After Switch Left is updated, a
frame from S1 must wait additional 175 µs according to the
new schedule. After this frame is transmitted, it misses its
time slot at Switch Right, which has not yet been updated.
This delays the frame by 1 ms until the next cycle, which can
be observed on a few frames of S1 at 0.4 s. Then Switch Right
is updated, which enforces the new schedule but cannot repair
the one-cycle delay. This delays the frame by 1 ms until the
next cycle, which can be observed on a few frames of S1 at
0.4 s. Then Switch Right is updated, which enforces the new
schedule but cannot repair the one-cycle delay.

TABLE II: Stream Reservation (SR) delay of TSN and TSSDN
w/ and w/o Gate Control (GC) for 20 different SR start times.

Variant SR start SR duration
(20 seeds; 0.05 ms steps) Minimum Average Maximum

TSN w/ GC 0.1 s to 0.100 95 s 0.115 ms 0.775 ms 1.404 ms
TSSDN w/o GC 0.1 s to 0.100 95 s 0.828 ms 0.862 ms 1.001 ms
TSSDN w/ GC 0.45 s to 0.450 95 s 0.828 ms 1.495 ms 2.370 ms

Min

Avg

Max

S1
Sy

nc

TSN
TSSDN
TSSDN before C3

| Analytical bound

Min

Avg

Max

S4
A

sy
nc

0 0.5 1 1.5 2 2.5 3
Min

Avg

Max

End-to-end latency [ms]
S4

B
E

) S1
L-C1 = 0.37 ms

) S1
L-C3 = 0.55 ms

) S2
Lwc

= 1.36 ms

Fig. 10: End-to-end latency comparison for the three traf-
fic classes in TSN and TSSDN. The minimum, average,
maximum, and the analytical bound are depicted. For each
min/avg/max, again the average and deviation for minimum
and maximum is indicated from simulations with 20 seeds.

0.2
0.4
0.6
0.8 Synchronous update

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

E
nd

-t
o-

en
d

la
te

nc
y
[m

s] Ordered update Source 1
Source 2
Source 3

0.2 0.3 0.4 0.5 0.6 0.7

0.2
0.4
0.6
0.8

C3-1 C3-2

Simulation time [s]

Split ordered update

C1 C2 C3 C4 C5 C6

Fig. 11: Impact of reconfigurations C1–C6 on end-to-end la-
tency of synchronous traffic for three different update methods.
Synchronous update – both switches apply the changes at a
synchronized time; ordered update – changes are executed in
the order required by the first operation; split ordered update
– configuration C3 is split in two transactions (C3-1, C3-2).

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

Zone Controller
Front Right

Zone Controller
Front Right

CAN 4

.........

CAN 4

...

CAN 1

.........

CAN 1

...

CAN 3

.........

CAN 3

...

CAN 2

.........

CAN 2

...

CAN 3

...

CAN 2

...

Zone Controller
Front Right

CAN 4

...

CAN 1

...

CAN 3

...

CAN 2

...

CAN 1

.........

CAN 1

...

CAN 4

......

CAN 4

...

CAN 2CAN 2

ACCACCACC

CAN 2

ACC

CAN 3CAN 3

.........

CAN 3

...

CAN 2

ACC

CAN 3

...

Zone Controller
Front Left

Zone Controller
Front Left

Zone Controller
Front Left

CAN 1

...

CAN 4

...

CAN 2

ACC

CAN 3

...

Zone Controller
Front Left

CAN 1

.........

CAN 1

...

CAN 2

.........

CAN 2

...

CAN 4

.........

CAN 4

...

Zone Controller
Rear Left

Zone Controller
Rear Left

CAN 1

...

CAN 2

...

CAN 4

...

Zone Controller
Rear Left

CAN 4

.........

CAN 4

...

CAN 3

.........

CAN 3

...

CAN 1

.........

CAN 1

...

Zone Controller
Rear Right

Zone Controller
Rear Right

CAN 4

...

CAN 3

...

CAN 1

...

Zone Controller
Rear Right

DiagnosticsDiagnosticsDiagnosticsDiagnostics

Switch FrontSwitch Front Switch RearSwitch RearSwitch RearSwitch Front Switch Rear

SDN
Controller

SDN
Controller

CAN 5

......

CAN 5

...

High-Performance
Computer

Infotainment

High-Performance
Computer

Infotainment

WifiWifi LTELTE

Online GatewayOnline GatewayOnline GatewayOnline Gateway

Wifi LTE

Online Gateway

Ethernet
ECU
Ethernet
ECU

CAN
ECU
CAN
ECU

CAN-Ethernet
Gateway
CAN-Ethernet
Gateway

SDN
Switch
SDN
Switch

SDN
Controller
SDN
Controller

CAN-BusCAN-Bus
Ethernet
Link (1Gbit/s)
Ethernet
Link (1Gbit/s)

Fig. 12: IVN of a production vehicle transformed to a software-defined Ethernet network in a zone topology.

Splitting transaction C3 into two transactions (C3-1, C3-2)
can solve this problem. C3-1 only shifts the flow of S1 first
on Switch Right, then on Switch Left. C3-2 shifts the flow
of S2 and adds the flow S4 in reverse order. This ensures the
correct execution order for all operations in the transaction.

E. Discussion

Synchronous traffic schedules allow for reconfiguration
without a penalty for existing or additional real-time traffic,
provided a suitable update method executes commits simulta-
neously on all devices or iteratively in the correct order. For
the latter, the order depends on the type of reconfiguration and
requires that a transaction contains only operations of the same
update priority. Synchronous updates can bundle all operations
within one transaction.

Controlling asynchronous communication via OpenFlow
does not affect real-time traffic, only the SR experiences a
small start up delay. Since the SRP is transmitted as BE traffic,
it may be affected by cross traffic, and hence stays without
guaranteed temporal bounds in both the TSSDN and TSN-
only variants. Our additional delay of 0.97 ms is acceptable
as it stays well below the automotive requirements for service
setup times, which range around 150 ms to 200 ms. To leverage
the full potential of SDN, the SRP can be optimized so that the
controller does not need to propagate between switches [28].
This could result in an even lower startup delay.

A side effect observed in our evaluations is that SDN
protects real-time traffic. Precise flow matching acts as an
ingress control and ensures that new traffic is not forwarded
until a flow rule has been installed. For transactional schedule
reconfiguration, this also implies that the GCL has already
been updated prior to accommodating a flow. Unknown flows
are not queued and thus cannot delay existing real-time traffic.

Finally, our results show that the combination of SDN and
TSN in the proposed architecture works as expected. Deadlines
for synchronous and asynchronous TSN flows are met and
remain unaffected by the introduction of SDN. Meanwhile,
forwarding is controlled by an SDN controller, which opens
potentials for resilience, security, and adaptability of the IVN.

(a) Seat Ateca prototype vehicle (b) Installation in the trunk

Fig. 13: Pictures of the prototype and installed components.

VI. SECURITY IMPACT OF PRECISE SDN FLOW CONTROL
FOR IN-VEHICLE COMMUNICATION

The goal of our security approach with TSSDN is to isolate
in-vehicle control flows in a shared environment and prevent
unwanted traffic. We compare the different flow separation
concepts described in Section IV-B in a case study of a realistic
IVN that was derived from a production car.

The attacker model for our case-based security study fo-
cuses on remote attackers. A remote attacker needs access
to the car first to launch an attack. There are many inter-
faces, most of which are connected to larger ECUs such
as the infotainment or an online gateway [32]. Once the
attacker manages to overcome the first layer of defense,
he can gain access to the IVN backbone to launch attacks
on in-vehicle components. Correspondingly, our threat model
reflects network-centric attacks. Threats arrive from scanning,
denial of service, replay, and forgery attacks. We elaborate in
characteristic examples, against which threats the TSSDN flow
separation can safeguard and against which it cannot.

A. Experimental Setup of Our SDN-Based Prototype Car

Figure 13 shows our prototype car (13a) with a software-
defined Ethernet backbone installed in the trunk (13b). The
network topology is shown in Figure 12 derived from the CAN
network originally implemented in a central gateway topology,
which we transformed into an Ethernet zone topology. All
CAN ECUs are grouped into four zones based on their
placement in the vehicle (Front-Left (FL), -Right (FR), Rear-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

Left (RL), -Right (RR)). A Zone Controller (ZC) handles com-
putation intensive tasks and acts as a CAN-Ethernet gateway.

Despite the placement of the CAN-ECUs, the original
domain buses (numbered from 1 to 5) are retained, e.g., CAN
1 on ZC FL and CAN 1 on ZC FR originally belonged to a
single domain bus. A High-Performance Computer handles the
infotainment system and acts as a gateway between all CAN
ECUs and the infotainment domain. We extend the original
CAN network of the production car with Ethernet ECUs for
diagnostics and external connectivity.

The software-defined Ethernet backbone consisting of two
switches controlled by an SDN controller. We generate three
network configurations that correspond to our three separation
concepts compliant to the communication matrix of our origi-
nal production vehicle. In one configuration, ZCs embed CAN
messages fully exposed on Layer 2 to enable separation by
messages. The other two configurations use hidden embedding
in SOME/IP tunnels and encode the topic or domain identifier
in the multicast destination IP, enabling separation by topic
or domain. The receiving ZC transforms the packets back to
CAN frames and forwards them to the CAN bus destinations.

In all three configurations, the original messages from the
vehicle are correctly forwarded to all valid receivers. Our
analysis focuses on the invalid control flows that are either
blocked or forwarded by the backbone. The flow separation
is not affected by the amount of data transported in the flows
and does not depend on the state of the vehicle, e.g., whether
it is driving or not. In this way, we assume the worst case
scenario which allows all original vehicular control flows at all
times. Configuring the network according to the vehicle state
can reduce the number of legible flows in the network, which
enhances the effect of flow separation, but will not change the
characteristic methods of separation.

B. Mapping Control Flows on Network Flows

We focus our analysis on the CAN Control Flows (CFs) that
traverse the Ethernet backbone. Therefore, we do not consider
local CFs, for which the sender and all receivers are located
within the same zone. In total there are 242 different CFs
forwarded via the backbone.

TABLE III: Control Flows (CF) bundled in a Network Flow
(NF) with the number of NFs that carry multiple CFs.

Separation # NFs (with
multiple CFs)

CFs per NF
Minimum Average Maximum

By Message 242 (0) 1 1 1
By Domain 19 (19) 5 13 37
By Topic 102 (38) 1 3 17

Table III shows the generated Network Flows (NFs) for
each separation concept in relation to the number of CFs
bundled in a NF. Message separation isolates the 242 CFs
within individual NFs. Separation by domain generates 19
NFs, one tunnel for each sender and domain all of which carry
multiple CFs. There is a minimum of 5, an average of 13, and
a maximum of 37 CFs per NF, so there is at least one NF
carrying 37 CFs that cannot be distinguished by the network.

1 2 3 4
0

20
40
60
80

100

Destination ZCs [#]

N
et

w
or

k
flo

w
s

[%
]

Separation by Message by Topic by Domain

Fig. 14: Destination ZCs reached by a share of NFs.

The topic separation generates 102 NFs, one tunnel for each
sender and topic. 38 of these NFs carry multiple CFs. This
means that 64 of the topics contain only one CF and therefore
behave exactly as if separated by message. In the following
analysis, separation by message can be used as a baseline as it
implements exactly the relations of the communication matrix.

All NFs are implemented as multicast to reach multiple
destinations if necessary. Figure 14 shows the share of NFs
sent to a particular number of destinations (ZCs). Separation
by message and topic show similar results, although additional
7% of NFs reach all gateways with separation by topic. Again,
this similarity could be caused by the 64 CFs in completely
isolated topics. With domain separation zero NFs reach fewer
than three gateways, around a third reach exactly three and
nearly 70% reach all gateways in the network. In particular,
the relative difference of NFs reaching all four destinations is
notable. This is expected as the ECUs of a domain are usually
distributed throughout the vehicle and therefore most domains
are present in every zone. Nevertheless, this is a security issue
as those receivers should not be able to receive those flows
and also indicates that the embedding has a big influence on
network overhead.

C. Security and Performance of Control Flow Separation

The attack surface of CFs depends on their isolation in the
network. We compare the separation concepts based on how
well CFs can be attached to paths between the ZCs. Without
separation, any node in the network could send and receive any
of the 242 different CFs traversing the backbone. Optimally,
however, only gateways that actually link ECUs participating
in a CF should be able to send and receive it on the backbone.
To evaluate this, we sort the 242 possible CFs that could be
sent from one ZC to another into the following categories:
• A CF is legitimate if the original CAN source ECU

is connected to the source ZC and at least one CAN
ECU connected to the destination ZC is a valid receiver
according to the communication matrix.

• An oversupplied CF is legitimately sent but received by
a destination ZC that does not need it.

• A CF is permitted if it could be sent by the source and
would be forwarded to the destination. Even though not
present in our communication matrix, these flows could
be used by malicious components.

• A forbidden CF is filtered by the backbone and is not
forwarded from the source to the destination.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

M
ess

ag
e

Top
ic

Dom
ain

0

20

40

60

80

100

C
on

tr
ol

flo
w

s
[%

]

M
ess

ag
e

Top
ic

Dom
ain

M
ess

ag
e

Top
ic

Dom
ain

Legitimate Oversupplied Permitted Forbidden

Case 1:
ZC FL → ZC FR

Case 2:
Total → ZC FR

Case 3:
Total → All dest.

Fig. 15: Share of legitimate, oversupplied, permitted, and
forbidden CFs from ZC FL to ZC FR, all sources to ZC FR,
and all sources to all destinations.

Figure 15 visualizes the shares of legitimate, oversupplied,
permitted and forbidden CFs in relation to the maximum
possible CFs in three cases: (1) concentrates on a specific
connection between two exemplary ZCs (from ZC FL to
ZC FR), (2) includes all CFs from any source ZC to one
destination (ZC FR), and (3) looks at the whole backbone
communication from all ZCs to all ZCs. An exhaustive anal-
ysis of all communication relations between the gateways in
our prototype can be found in [13].

All three cases clearly show the effectiveness of the strict
message separation from exposed embedding. When separated
by message, the software-defined backbone only forwards the
legitimate CFs and forbids any other CF. The hidden applica-
tion layer embeddings oversupply and permit illegitimate CFs.
Still, only CFs of the tunnels that are already in use by the
sending nodes are supported by the network. More precisely,
topics can improve the separation of flows in the network.
As explained earlier, we chose our topics by grouping similar
messages from the communication matrix. We could not group
some CFs into topics, making them perfectly separated in their
own topic, which affects the results.

In the third case, 12% of all CFs from all sources to all desti-
nations are legitimate. With separation by topic additional 3%
are oversupplied at the destinations, with domain separation
around 7%. Gateways can filter the unneeded CFs at the cost of
processing power so that no unwanted message reaches a CAN
bus. Still, the network load on the backbone increases through
oversupplied control traffic with domain and topic separation.
This clearly conflicts with the benefits of aggregation, which
is one of the main arguments for using hidden embeddings.

Table IV shows the average bandwidth sent and received by
all four ZCs and the frame size of Ethernet-embedded CAN
traffic from our production vehicle over a period of 60 s. With
exposed and hidden embedding, about the same bandwidth
is sent without aggregation. The average frame size increases
when multiple CAN frames are aggregated for a given interval

TABLE IV: Sent and received bandwidth at all four ZCs of
Ethernet embedded CAN traffic (CAN Bus 1 – 4) separated
by message or domain with different aggregation intervals.

Embedding Aggregation
interval

Average
frame size

Bandwidth
sent

Bandwidth
received

Per message w/o agg. 64 B 1.4 Mbit/s 3.1 Mbit/s

Per domain

w/o agg. 72 B 1.5 Mbit/s 4.6 Mbit/s
1 ms 101 B 1.1 Mbit/s 3.3 Mbit/s
5 ms 119 B 1.0 Mbit/s 2.9 Mbit/s

10 ms 145 B 0.9 Mbit/s 2.6 Mbit/s
50 ms 324 B 0.7 Mbit/s 2.1 Mbit/s

100 ms 527 B 0.6 Mbit/s 1.9 Mbit/s

before being sent alone or together with other messages, which
in turn significantly increases latency and jitter. This is not
possible for exposed embeddings, since only one message per
frame is allowed. Most evaluations of aggregation strategies
only consider the bandwidth sent by the gateways. Our evalu-
ation shows that the embedding strategy and thus the enabled
separation in the network has a major impact on the bandwidth
at the receiver side. Without aggregation, separation by domain
results in 50% higher received bandwidth, again illustrating
oversupply. The transmitted and received bandwidth depends
on the traffic pattern and network topology. Kern et al. [53]
were able to reduce the transmitted bandwidth by up to 75%
using synthetic CAN traffic when messages are aggregated
for 5 ms to 10 ms. For our specific vehicle, aggregation for an
interval of 10 ms reduces the bandwidth sent by 35% while
the received bandwidth is reduced by only 6%. The evaluation
shows that aggregating traffic from low-bandwidth bus systems
such as CAN has little impact, especially when considering
1 Gbit/s Ethernet networks. Above all, it is a security issue that
network nodes are confronted with messages for which they
are not prepared. Separation by message is the only concept
that can solve this problem with zero oversupplies.

From a security perspective, the CFs that a (malicious)
ECU could send are even more relevant than the CFs it can
receive. From all sources to all destinations, 31% of all CFs are
permitted with topic separation and even 67% with separation
by domain, while only 12% are needed (see Figure 15).
This shows the security weakness of the hidden embedding
approach. When a device participates in a tunnel, it can listen
to all CFs of this tunnel and is permitted to send all CFs of
the tunnel. A smaller number of filtered CFs eases attacks as
fewer ECUs need to be compromised to gain control of the
car. Even if gateways filter all unwanted and illegally sent
messages it would still be possible to attack the NFs, e.g., by
flooding the tunnels to delay time-critical flows. In the case of
exposed embeddings, which fully isolates messages by SDN,
attackers must compromise the exact sender of each CF on
the Ethernet backbone to issue messages in this channel.

D. Benefits and Limitations in Characteristic Attack Scenarios

We investigate how robustly our setup of static flows
augmented by ACL-controlled dynamic flows can isolate in-
vehicle control flows and prevent unwanted traffic in case
of example attacks. The attack surface of the IVN depends

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 14

heavily on which data flows are blocked or forwarded. We
consider examples that affect data flows in the network to
illustrate the impact of SDN flow control.

For characteristic attack scenarios we assume that the at-
tacker succeeded in compromising the gateway so that attacks
can be launched from there. Table V summarizes the results
for our IVN with and without SDN access control. For the
latter, the controller acts as a simple Ethernet switch.

TABLE V: Attacks launched from the online gateway in an
unprotected environment and with SDN access control. A host
scan searches for the existing 11 hosts, a port scan examines
4 open TCP and 8 open UDP ports on a host, and a TCP SYN
flood of 1000 connections tries to impair the target.

Attack impact w/o access control w/ access control

Hosts discovered 11 11 (0 when arp is blocked)
Ports discovered 4 TCP, 8 UDP 0 TCP, 0 UDP
TCP SYN flood arrived 1000 0 (1000 at SDN controller)

Scans are the most common network attacks and used to
gather information about the system. All eleven hosts can
be discovered from the online gateway with nmap even with
access control as long as ARP is not blocked by the ACL.
Since hosts in the IVN are usually known, ARP can be
blocked, which means that no hosts are discoverable. Scanning
the ports of a host without access control, we discover 4 open
TCP ports and 8 open UDP ports. With access control, no
open ports can be discovered. This is true even for ports to
which there is a connection, since the flow rules match source
and destination ports and nmap uses the wrong source port.
With elevated rights, however, the attacker could select the
correct source port, which requires detailed knowledge about
the vehicle and is even more difficult on embedded devices.
Without scans, most attackers cannot perform further attacks.

As an example of a denial of service attack, we perform a
TCP SYN flood attack on one of the discovered TCP ports.
Without access control, all 1000 SYNs arrive at the target
and the attack is successful. Since new source port and IP
pairs are used for each SYN, they are detected and blocked
by our ACL. Such attacks, however, are then forwarded by
the switches to the SDN controller and could overload it. This
is a known problem in SDN and protection mechanisms have
been investigated in the past [60]. For example, most current
SDN controllers can be distributed across multiple instances
in standby to eliminate the single point of failure. In our case,
the static flow rules in the switches are preserved even when
the controller is unavailable, which guarantees safety-critical
communication. Nevertheless, protection mechanisms for the
controller should be further investigated in future work.

For targeted attacks, we assume that the adversary has
detailed knowledge about the vehicle and attacks specific
components. We analyze the impact of a replay attack, which
is a targeted attack on multiple control flows. We recorded
a 30 s trace of 10206 packets at ZC FL embedded exposed
and hidden (per domain). Table VI shows the results for a
replay from the online gateway. For conventional multicast,
network device can react to unknown multicast addresses by
either dropping or broadcasting the packet. Multicast groups

TABLE VI: Share of packets forwarded from a 30s replay
(10206 packets total) recorded at ZC FL and played back
from the online gateway. The results are shown for exposed
and hidden embeddings each with SDN access control and
conventional L2/L3 multicast. For the conventional forwarding
unknown multicast groups are either dropped or broadcasted.

Embedding Dest. Conventional multicast w/ access control
(drop policy) (broadcast policy)

Per
domain
(hidden)

ZC FL 10206 (100%) 10206 (100%) 0
ZC FR 10206 (100%) 10206 (100%) 0
ZC RR 10206 (100%) 10206 (100%) 0
ZC RL 10206 (100%) 10206 (100%) 0

Per
message
(exposed)

ZC FL 0 1903 (19%) 0
ZC FR 7242 (71%) 10022 (98%) 0
ZC RR 8617 (84%) 9525 (93%) 0
ZC RL 4072 (40%) 4980 (49%) 0

that reach only devices on one switch are not registered
on the other switch. With domain embedding, both switches
are aware of all multicast groups, so all packets reach all
destinations with both policies. Using per message embedding
performs better because not every device joins all multicast
groups. The original sender (ZC FL) does not receive packets
with the drop policy because it is not a receiver of any of
the multicast groups. The valid receivers, however, receive
all packets from their registered multicast groups. With SDN
access control, all packets are blocked since the ingress port
connected to the online gateway is not a valid source of any
of the flows. Herein lies the strength of our network-centric
security approach. Regardless of the embedding, an attacker
must control a legitimate sender of a CF in order to send it.

In our IVN, there are no flows from the online gateway
to the zonal controllers, so no direct driving commands can
be sent. In future autonomous scenarios, larger ECUs will
also use online services, e.g., for detailed up-to-date maps,
and thus have communication paths to the online gateway.
Targeted attacks, such as a, replay, packet flood, or forged
information in an established network flow, are not prevented
by our approach. Additional mechanisms such as anomaly
detection can help detecting such attacks and countermeasures
could be initiated by SDN, e.g., through reconfigurations.

E. Discussion

Our evaluation shows how SDN flow control can protect
the IVN. In general, communication is drastically limited
and attacks on unknown flows are detected and blocked.
Regardless of the embedding strategy, Ethernet ECUs such as
the online gateway are not allowed to send or receive control
messages, which reduces the attack surface. This protects
legacy ECUs that lack defense mechanisms from attacks by
stronger ECUs as communication is forbidden between them.

On the other hand, targeted attacks that use flows already
installed in forwarding devices cannot be prevented by our
access control mechanism. Hidden embeddings lead to unin-
tended receivers of critical CFs and permit their transmission
from other network participants, posing a risk to safety and se-
curity. Exposed embedding allows the network to separate all

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 15

CFs, ensuring that only the original sending ZC is allowed to
send the CF and that it only reaches the necessary destinations.
This adds a layer of network security even in the case of a
compromised gateway, but cannot prevent attacks from ECUs
that are allowed to send certain CFs. Nevertheless, attacks are
limited to the pre-installed and allowed flows and thus the
attack surface is significantly reduced.

Our zone topology with SDN-enforced message separation
is also more secure than the original network architecture of
our production vehicle. In a pure CAN bus architecture, traffic
on the buses cannot be controlled. All ECUs connected to a
domain bus can send any CF and receive any message on the
bus. A compromised ECU can attack all other ECUs in its
domain. Gateways can use the CAN IDs to filter messages to
be forwarded, but cannot verify the correct sender of a CF.
The zone topology splits the CAN domain buses so that fewer
ECUs are connected to a physical bus. The gateways can thus
filter messages and fewer ECUs are completely unprotected. If
each ECU were directly connected to the zone controller, the
correct sender could be verified. Combined with separation of
messages by SDN, this could offer perfect separation of CFs
and thus a robust, trustworthy communications backbone.

In all attack scenarios, the SDN controller must be well
protected because it could be the target of attacks itself. In
our case, the static configuration protects the safety-critical
traffic in the IVN, since it cannot be changed by the controller.
Future work could perform a risk analysis for attacks on the
SDN controller in vehicles.

VII. CONCLUSION AND OUTLOOK

In this work, we investigated the integration of TSN with
SDN for improving network security in Ethernet-based IVNs.
We presented a TSSDN switching architecture that harmonizes
the functions of TSN and SDN. At its core, our approach im-
plements SDN flow control for simultaneous asynchronous and
synchronous real-time as well as best-effort traffic in vehicles.
We could show how time-sensitive flows can be reserved via
OpenFlow, and how TDMA schedules can be reconfigured at
runtime without sacrificing the real-time capabilities of TSN.

Targeting at network-level security by isolation, we com-
paratively evaluated three strategies for mapping control flows
into a software-defined Ethernet backbone of a real-world
IVN, which we transformed into a realistic software-defined
Ethernet topology. Our analysis revealed that network security
and performance can be largely improved by exposing control
flow properties in standard network header fields which are
processed by forwarding devices. Embeddings that are hidden
within application layer protocols lead to significant oversup-
ply of control flows, which opens the attack surface.

Future work shall analyze the impact of network-wide
schedule reconfiguration strategies on real-time traffic in dif-
ferent scenarios. A mechanism for TSN senders of scheduled
traffic is needed to exchange requirements with the SDN
controller and announce the start of a transmission. Additional
network-level intelligence can further improve in-vehicle se-
curity, as there are still unused options applicable as security
guards based on SDN monitoring and control.

REFERENCES

[1] K. Matheus and T. Königseder, Automotive Ethernet. Cambridge,
United Kingdom: Cambridge University Press, Jan. 2015.

[2] S. Brunner et al., “Automotive E/E-Architecture Enhancements by Usage
of Ethernet TSN,” in 2017 13th WS on Intelligent Solutions in Embedded
Systems (WISES). IEEE, 2017, pp. 9–13.

[3] IEEE 802.1 Working Group, “IEEE Standard for Local and Metropolitan
Area Network–Bridges and Bridged Networks,” Standard IEEE 802.1Q-
2018 (Revision of IEEE Std 802.1Q-2014), Jul. 2018.

[4] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Net-
works,” ACM SIGCOMM Comp. Comm. Rev., vol. 38, pp. 69–74, 2008.

[5] K. Halba et al., “Robust Safety for Autonomous Vehicles through
Reconfigurable Networking,” in 2nd International WS on Safe Control
of Autonomous Vehicles, ser. Electronic Proc. in Theoretical Computer
Science, vol. 269. Open Publishing Association, 2018, pp. 48–58.

[6] T. Häckel et al., “Software-Defined Networks Supporting Time-Sensitive
In-Vehicular Communication,” in 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring). IEEE, Apr. 2019, pp. 1–5.

[7] M. Haeberle et al., “Softwarization of Automotive E/E Architectures:
A Software-Defined Networking Approach,” in 2020 IEEE Vehicular
Networking Conference (VNC). IEEE, Dec. 2020, pp. 1–8.

[8] N. G. Nayak et al., “Time-sensitive Software-defined Network (TSSDN)
for Real-time Applications,” in 24th International Conf. on Real-Time
Networks and Systems, ser. RTNS ’16. ACM, 2016, pp. 193–202.

[9] P. Mundhenk, Security for Automotive Electrical/Electronic (E/E)
Architectures. Göttingen: Cuvillier, Aug. 2017.

[10] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[11] S. Shin et al., “Enhancing Network Security through Software Defined
Networking (SDN),” in 2016 25th International Conference on Com-
puter Communication and Networks (ICCCN). IEEE, Aug. 2016.

[12] O. Yurekten and M. Demirci, “SDN-based cyber defense: A survey,”
Future Gen. Computer Systems, vol. 115, pp. 126–149, Feb. 2021.

[13] T. Häckel et al., “Strategies for Integrating Controls Flows in Software-
Defined In-Vehicle Networks and Their Impact on Network Security,”
in 2020 IEEE Vehicular Networking Conf. (VNC). IEEE, Dec. 2020.

[14] M. Dibaei et al., “Attacks and defences on intelligent connected vehicles:
a survey,” Digital Com. and Networks, vol. 6, pp. 399–421, Nov. 2020.

[15] AUTOSAR, “SOME/IP Protocol Specification,” Std. 696, Nov. 2021.
[16] A. Kampmann et al., “A Dynamic Service-Oriented Software Ar-

chitecture for Highly Automated Vehicles,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). IEEE, 2019, pp. 2101–2108.

[17] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, pp. 1094–1120, Jun. 2019.

[18] T. Steinbach et al., “Tomorrow’s In-Car Interconnect? A Competitive
Evaluation of IEEE 802.1 AVB and Time-Triggered Ethernet (AS6802),”
in 2012 IEEE Vehicular Technology Conf. (VTC Fall). IEEE, Sep. 2012.

[19] V. Gavriluţ et al., “AVB-Aware Routing and Scheduling of Time-
Triggered Traffic for TSN,” IEEE Access, vol. 6, pp. 75 229–75 243,
Nov. 2018.

[20] A. A. Syed et al., “MIP-based Joint Scheduling and Routing with Load
Balancing for TSN based In-vehicle Networks,” in 2020 IEEE Vehicular
Networking Conference (VNC). IEEE, Dec. 2020.

[21] R. Enns et al., “Network Configuration Protocol (NETCONF),” IETF,
RFC 6241, June 2011.

[22] D. Kreutz et al., “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, pp. 14–76, Jan. 2015.

[23] Open Networking Foundation, “OpenFlow Switch Specification,” ONF,
Standard ONF TS-025, 2015.

[24] D. Thiele and R. Ernst, “Formal Analysis Based Evaluation of Software
Defined Networking for Time-Sensitive Ethernet,” in 2016 Design,
Automation & Test in Europe (DATE). IEEE, Mar. 2016, pp. 31–36.

[25] N. G. Nayak et al., “Incremental Flow Scheduling and Routing in Time-
Sensitive Software-Defined Networks,” IEEE Transactions on Industrial
Informatics, vol. 14, pp. 2066–2075, 2018.

[26] T. Steinbach et al., “Beware of the Hidden! How Cross-traffic Affects
Quality Assurances of Competing Real-time Ethernet Standards for In-
Car Communication,” in 2015 IEEE LCN, Oct. 2015, pp. 1–9.

[27] T. Gerhard et al., “Software-defined Flow Reservation: Configuring
IEEE 802.1Q Time-Sensitive Networks by the Use of Software-Defined
Networking,” in 2019 24th IEEE Int. Conf. on Emerging Technologies
and Factory Automation (ETFA). IEEE, Sep. 2019, pp. 216–223.

[28] S. Nam et al., “Simplified Stream Reservation Protocol over Software-
Defined Networks for In-vehicle Time-Sensitive Networking,” IEEE
Access, pp. 1–12, Jun. 2021.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 16

[29] J. Cui et al., “Transaction-Based Flow Rule Conflict Detection and Res-
olution in SDN,” in 2018 27th International Conference on Computer
Communication and Networks (ICCCN). IEEE, Jul. 2018, pp. 1–9.

[30] M. Curic et al., “Transactional Network Updates in SDN,” in 2018 Eur.
Conf. on Networks and Communications (EuCNC). IEEE, Jun. 2018.

[31] R. Rotermund et al., “Requirements Analysis and Performance Eval-
uation of SDN Controllers for Automotive Use Cases,” in 2020 IEEE
Vehicular Networking Conference (VNC). IEEE, Dec. 2020.

[32] S. Checkoway et al., “Comprehensive Experimental Analyses of
Automotive Attack Surfaces,” in 20th USENIX Security Symposium,
vol. 4. USENIX Association, Aug. 2011, pp. 77–92.

[33] L. Wang et al., “k-Zero Day Safety: A Network Security Metric for
Measuring the Risk of Unknown Vulnerabilities,” IEEE Transactions
on Dependable and Secure Computing, vol. 11, pp. 30–44, Jan. 2014.

[34] A. Ruddle et al., “Security Requirements For Automotive On-Board
Networks Based On Dark-Side Scenarios,” Evita Deliverable 2.3, 2009.

[35] J.-P. Monteuuis et al., “SARA: Security Automotive Risk Analysis
Method,” in 4th ACM WS on Cyber-Physical System Security, ser.
CPSS ’18. ACM, 2018, pp. 3–14.

[36] S. Longari et al., “A Secure-by-Design Framework for Automotive On-
board Network Risk Analysis,” in 2019 IEEE Vehicular Networking
Conference (VNC). IEEE, Dec. 2019.

[37] V. L. L. Thing and J. Wu, “Autonomous Vehicle Security: A Taxonomy
of Attacks and Defences,” in 2016 IEEE Int. Conference on iThings and
GreenCom and CPSCom and SmartData. IEEE, Dec. 2016.

[38] M. D. Pesé et al., “Hardware/Software Co-Design of an Automotive
Embedded Firewall,” in SAE Technical Paper. SAE Int., Mar. 2017.

[39] M. Rumez et al., “Integration of Attribute-based Access Control into
Automotive Architectures,” in 2019 IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE, Jun. 2019.

[40] S. Seifert and R. Obermaisser, “Secure Automotive Gateway - Secure
Communication for Future Cars,” in 2014 12th IEEE International
Conference on Industrial Informatics (INDIN), 2014, pp. 213–220.

[41] G. K. Rajbahadur et al., “A Survey of Anomaly Detection for Connected
Vehicle Cybersecurity and Safety,” in 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, Jun. 2018.

[42] L. Yang et al., “Tree-Based Intelligent Intrusion Detection System in
Internet of Vehicles,” in 2019 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2019, pp. 1–6.

[43] P. Meyer et al., “Network Anomaly Detection in Cars based on Time-
Sensitive Ingress Control,” in 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall). IEEE, Nov. 2020, pp. 1–5.

[44] P. Waszecki et al., “Automotive Electrical and Electronic Architecture
Security via Distributed In-Vehicle Traffic Monitoring,” IEEE TCAD,
vol. 36, pp. 1790–1803, Nov. 2017.

[45] F. Langer et al., “Establishing an Automotive Cyber Defense Center,”
in 17th escar Europe : embedded security in cars, 2019.

[46] Q. Hu and F. Luo, “Review of Secure Communication Approaches for
In-Vehicle Network,” Int. J. Auto. Tech., vol. 19, pp. 879–894, Sep. 2018.

[47] S. Fassak et al., “A secure protocol for session keys establishment
between ECUs in the CAN bus,” in 2017 International Conf. on Wireless
Networks and Mobile Communications (WINCOM). IEEE, Nov. 2017.

[48] D. Püllen et al., “Securing FlexRay-Based In-Vehicle Networks,” Mi-
croprocessors and Microsystems, p. 103144, Jun. 2020.

[49] IEEE, “IEEE Standard for Local and metropolitan area networks-Media
Access Control (MAC) Security,” Std. IEEE 802.1AE-2018, Dec. 2018.

[50] M. Khodaei et al., “SECMACE: Scalable and Robust Identity and
Credential Management Infrastructure in Vehicular Communication
Systems,” IEEE T-ITS, vol. 19, pp. 1430–1444, May 2018.

[51] M. Rumez et al., “An Overview of Automotive Service-Oriented Archi-
tectures and Implications for Security Countermeasures,” IEEE Access,
vol. 8, pp. 221 852–221 870, 2020.

[52] L. Leonardi et al., “Bandwidth partitioning for Time-Sensitive Net-
working flows in automotive communications,” IEEE Communications
Letters, pp. 3258–3261, 2021.

[53] A. Kern et al., “Gateway Strategies for Embedding of Automotive
CAN-Frames into Ethernet-Packets and Vice Versa,” in Architecture of
Computing Systems - ARCS 2011. Springer, 2011, pp. 259–270.

[54] OpenSim Ltd., “OMNeT++ Discrete Event Simulator.” [Online].
Available: https://omnetpp.org/

[55] T. Häckel et al., “SDN4CoRE: A Simulation Model for Software-
Defined Networking for Communication over Real-Time Ethernet,”
in 6th International OMNeT++ Community Summit 2019, ser. EPiC
Series in Computing, vol. 66. EasyChair, Dec. 2019, pp. 24–31.

[56] OpenSim Ltd., “INET Framework.” [Online]. Available: https:
//inet.omnetpp.org/

[57] D. Klein and M. Jarschel, “An OpenFlow Extension for the OMNeT++
INET Framework,” in 6th International ICST Conference on Simulation
Tools and Techniques, ser. SimuTools ’13. ICST, 2013, pp. 322–329.

[58] P. Meyer et al., “Simulation of Mixed Critical In-vehicular Networks,”
in Recent Advances in Netw. Simulation. Springer, 2019, pp. 317–345.

[59] P. Meyer et al., “Extending IEEE 802.1 AVB with Time-triggered
Scheduling: A Simulation Study of the Coexistence of Synchronous and
Asynchronous Traffic,” in 2013 IEEE VNC. Dec. 2013, pp. 47–54.

[60] T. Han et al., “A comprehensive survey of security threats and
their mitigation techniques for next-generation SDN controllers,”
Concurrency and Computation, vol. 32:e5300, pp. 1–21, 2020.

Timo Häckel received his M.Sc. degree in com-
puter science from the Hamburg University of Ap-
plied Sciences (HAW), Hamburg, Germany, in 2018,
where he is currently pursuing the Ph.D. degree
with the Internet Technologies Research Group. His
particular research interest is the security of time-
sensitive vehicular networks, which he is exploring
within the German research project SecVI – Security
for Vehicular Information. Timo Häckel is also part
of the Communication over Real-Time Ethernet re-
search group at HAW Hamburg, where he develops

and maintains open source frameworks for the OMNeT++ simulator including
the CoRE4INET and SDN4CoRE framework.

Philipp Meyer is Ph.D. student and research assis-
tant in the Communication over Real-Time Ethernet
(CoRE) Research Group at the Hamburg University
of Applied Sciences (HAW), Hamburg, Germany. As
part of the CoRE Research Group, he started 2012
with researching on real-time Ethernet technologies
and their security. He received his B.Sc. (2013) and
M.Sc. (2018) in computer science in this context.
Furthermore, he pursued his interests as part of the
research projects Realtime Ethernet Backbone for
Cars (RECBAR) and X-Check. Currently, he is ex-

ploring in-car communication security as part of the research project Security
for Vehicular Information (SecVI). Philipp also develops and maintains the
CoRE open-source simulation environment and frameworks for OMNeT++.

Franz Korf is professor of Embedded Systems at
Hamburg University of Applied Sciences (HAW),
where he heads the Communication over Real-Time
Ethernet research group. He studied computer sci-
ence at RWTH Aachen University. At the chair of W.
Damm at the University of Oldenburg, he received
his doctorate in the field of system-level synthesis
tools. Before joining HAW Hamburg in 2004, he
headed the OEM development of server systems
at Fujitsu Siemens Computers. At HAW Hamburg,
Franz was responsible for various R & D projects in

the areas of real-time Ethernet architectures and embedded systems.

Thomas C. Schmidt is professor of Computer Net-
works and Internet Technologies at Hamburg Uni-
versity of Applied Sciences (HAW), where he heads
the Internet Technologies research group (iNET). He
studied mathematics, physics and German literature
at Freie Universitaet Berlin and University of Mary-
land, and received his Ph.D. from FU Berlin in 1993.
Since then he has continuously conducted numerous
national and international research projects. His con-
tinued interests lie in the development, measurement,
and analysis of large-scale distributed systems like

the Internet. He serves as co-editor and technical expert in many occasions and
is actively involved in the work of IETF and IRTF. Thomas is a co-founder
of several large open source projects and coordinator of the community
developing RIOT—the friendly Operating System for the IoT.

